Metallspiegel aus Jena reisen ins All
Im Large Binocular Telescope in Arizona dienen zwei Spiegel aus dem IOF mit einem Durchmesser von jeweils rund 20 Zentimetern dazu, das Licht aus den großen Acht-Meter-Spiegeln zusammenzuführen und Phasenverschiebungen auszugleichen. Auch im feinmechanisch-optischen Herzstück des neuen James-Webb-Space-Teleskop werden IOF-Spiegel stecken, um die infraroten Strahlen umzuleiten. Der Nachfolger des legendären Weltraumteleskops Hubble soll im Jahr 2013 ins All starten.
Das Team vom IOF in Jena verwendet Diamanten, um hochexakte Spiegel zu »schneiden«. Das Besondere daran: Diese Spiegel bestehen nicht aus Glas, sondern aus Metall. Typisch sind Aluminium oder Kupfer oder Legierungen daraus. »Solche Materialien haben eine hohe spezifische Steifigkeit, sind also gleichzeitig steif und leicht. Für eine genaue Abbildung von Objekten aus dem Weltall sind Spiegelsysteme notwendig, die ein Höchstmaß an Stabilität und Formgenauigkeit bieten und zugleich den Belastungen beim Raketenstart und im Dauerbetrieb widerstehen«, so der Gruppenleiter für Präzisionssysteme, Stefan Risse. Wenn man einen Spiegel ins Weltall schießt, soll er so leicht wie möglich sein, jedes Kilogramm Fracht kostet teures Geld.
Die IOF-Forscher haben deshalb ein Verfahren entwickelt, mit dem sie überflüssiges Material aus dem Werkstück herausnehmen können, ohne dadurch die Stabilität des Spiegels zu gefährden. Sie bohren oder schleifen nicht einfach Löcher von der Rückseite her ins Metall, wie das anderswo häufig gemacht wird, sondern arbeiten das überschüssige Material von der Seite aus heraus, ohne die Ober- und Unterseite dabei zu zerstören. So bildet sich nach und nach eine Art Sandwich, das zwischen den beiden intakt gebliebenen, geschlossenen Oberflächen aus einer in sich orthogonalen Säulenstruktur besteht. »Auf diese Weise können wir bis zu 60 Prozent des Metalls wegnehmen, ohne dass die Steifigkeit darunter leidet«, freut sich Stefan Risse. Erst wenn das Rohteil so »verschlankt« ist, beginnt die mehrere Stunden dauernde Präzisionsarbeit an der Spiegeloberfläche. Bereits in der Designphase wurde mit Finite-Elemente-Methoden die gewünschte Form des Spiegels aufs Genaueste berechnet. Diese Daten dienen nun zum ständigen Abgleich und zur Kontrolle während der Bearbeitung: Ultrapräzisionsdreh- und Fräsmaschinen »schneiden« mit Diamanten. Die Spezialmaschinen besitzen mechanische Achsen, die öl- oder luftgelagert sind und extrem genau eingestellt werden können. Durch eine exakte Ausrichtung des Diamantwerkzeugs und die Kompensation der Werkzeuggeometrie kann man mit ihnen nicht nur sphärische Formen herstellen, sondern auch komplexe, zum Beispiel asphärische Oberflächen.
Mit Hilfe einer Vakuum-Saugtechnik in der Maschine fixiert, dreht sich nun das Werkstück unter der scharf geschliffenen Spitze des Diamanten weg, der dabei mit seiner Mikroschneide einen Span von wenigen Mikrometern genau definierter Stärke abschält. Wie auf der Rille einer Schallplatte arbeitet sich der Diamant von außen nach innen voran. Das eingebaute Kontrollsystem der Maschine prüft zwar sehr genau, aber dennoch nicht genau genug. Deshalb ist es nötig, das Werkstück immer wieder herauszunehmen und seine Form zu kontrollieren. Dies geschieht mit optischen Verfahren: Bei kugelförmigen Spiegeln arbeitet man meist mit Interferometrie, bei der die Überlagerung von Laserstrahlen Auskunft über geringste Fehler gibt. Handelt es sich um kompliziertere Formen, benutzen die IOF-Forscher ein holographisches Verfahren, das mit Hilfe computergenerierter Hologramme eine Wellenfront erzeugt, deren Form der Soll-Oberflächenform des Spiegels angepasst ist. So lassen sich Abweichungen ebenfalls genau erkennen. Die Spezialisten am IOF haben inzwischen eine hohe Meisterschaft bei der Formgebung der Spiegel entwickelt: In der Regel reicht ihnen ein »cut« mit zwei anschließenden Korrekturschnitten, um einen Spiegel mit der nötigen hohen Präzision, einer Formqualität von Bruchteilen eines Mikrometers, fertig zu stellen.
Schon bei diesem ersten Bearbeitungsschritt entsteht eine spiegelnde Oberfläche. Jedoch ist jetzt noch das Streifenmuster der Diamantbearbeitung vorhanden. Um es zu entfernen beschichten die Forscher den Spiegel mit einer Nickel-Phosphor-Legierung, die eine amorphe Struktur aufweist. Sie kann mit Diamant bearbeitet und zusätzlich klassisch poliert werden. Anschließend läßt sich die Qualität des Spiegels noch weiter verbessern. »Wir, respektive unsere Fertigungspartner in Jena, schießen Ionen darauf und tragen so Material ab«, erläutert Stefan Risse. »Damit lassen sich auch ganz gezielt lokale Erhöhungen entfernen, was mechanisch kaum möglich ist.« Am Ende versehen die Forscher den Spiegel mit einer Schicht, die den geplanten Anwendungen entspricht.
Aber nicht nur beim Blick in den Himmel spielen die IOF-Spiegel eine Rolle, sondern auch bei optischen Messungen auf der Erde, die besondere Anforderungen stellen. So entwickelten die Jenaer Forscher einen Spezialspiegel für Messungen, die die gefährlichen Wirbelschleppen von Flugzeugen im Landeanflug aufspüren. Dazu braucht man einen rechteckigen Hochpräzisionsspiegel mit Kantenlängen von 11 und 15 Zentimetern, der sich in einer Sekunde siebeneinhalb Mal hin- und herbewegte. Die Kombination des Spiegels aus exakter Oberflächenqualität, großer Spiegelfläche und hoher Geschwindigkeit ließ sich nur mit einem Leichtbauspiegel des IOF realisieren.
Media Contact
Weitere Informationen:
http://www.iof.fraunhofer.deAlle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…