Mitdenkende Räder und Sensorgriff machen das Fahren leicht
Von Rollstuhl bis Einkaufswagen:
Leicht manövrierbare Rollstühle, Rollatoren und Krankenbetten; wendig in die Kurve gleitende Einkaufswagen oder Fahrradanhänger; Trolleys und Handkarren, die beim Ziehen und Schieben auch großer Lasten selbst unterstützen: All dies wird möglich mit der neuen Technologie, die Professor Matthias Nienhaus und sein Team von der Universität des Saarlandes entwickeln. Ohne zusätzliche Sensoren kommt ihr System aus intelligenten Rädern und Sensorgriff aus. Die Forscher benötigen hierfür nur die Daten, die beim Drehen in den Elektromotoren der Räder und durch Bewegung des Griffs anfallen.
Ihr Verfahren zeigen sie auf der Hannover Messe vom 17. bis 21. April (Halle 002, Stand B34).
Voll beladene Einkaufswagen können erstaunlich widerspenstig sein. Im Baumarkt mehrere Sack Zement zur Kasse zu chauffieren, lässt einen in Kurven wenig elegant aussehen. Die Physik der Trägheit stiehlt einem hier die Show. Schon das Anfahren stößt auf Widerstand. Ist der Wagen erst in Fahrt, will er freiwillig weder in die eine, noch die andere Richtung, geschweige denn anhalten. Auch andernorts kann der Transport auf Rädern das Leben, den Alltag oder die Arbeit schwermachen: Krankentransporte mit sperrigen Notfallliegen, Krankenbetten oder -stühlen verlangen Pflegepersonal und Rettungsdiensten einiges an Geschick und Krafteinsatz ab. Und auf wenig barrierefreien Wegen samt Steigung und Gefälle ist die Fahrt mit Rollstuhl, Rollator oder Kinderwagen mühevoll.
Eine neue Technologie, die das Forschungsteam von Professor Matthias Nienhaus an der Universität des Saarlandes entwickelt, kann überall dort, wo Menschen auf Räder angewiesen sind, die Fahrt, das Lenken und den Transport schwerer Transportgüter erheblich erleichtern. „Mit zwei Fingern lassen sich mit unserem Verfahren Lasten von 500 Kilogramm sicher bewegen und manövrieren. Wir setzen dabei auf das Zusammenspiel von intelligenten Rädern und einem Sensorgriff“, erklärt Matthias Nienhaus.
Die Räder, die der Antriebstechniker mit seinem Team entwickelt hat, wissen ohne zusätzliche Sensoren, wann sie mit wie viel Anschub die Fahrt etwa um Kurven oder bergauf unterstützen müssen. Sie beschleunigen oder bremsen, drehen langsam oder schneller je nach Bedarf – und zwar jedes Rad für sich oder im Team mit den anderen Rädern. „Wir nutzen hierzu die Elektromotoren im Inneren der Räder selbst als Sensor. Diese liefern uns sämtliche Messdaten, die wir benötigen. Das macht unser Verfahren besonders leistungsfähig und auch kostengünstig“, erläutert Matthias Nienhaus.
In mehreren Forschungsprojekten gingen die Forscherinnen und Forscher der Frage auf den Grund, wie sie aus den elektromagnetischen Antrieben möglichst viele Daten herauslesen können: zum Beispiel darüber, wie das elektromagnetische Feld an bestimmten Punkten im Motor verteilt ist, und wie es sich beim Rollen verändert. Sie sammelten zahllose solcher Messwerte, die in den Elektroantrieben der Räder ohnehin anfallen, während sie sich drehen, und ordneten sie bestimmten Motorzuständen und Radstellungen zu. Mithilfe dieser Daten können die Antriebstechniker Verschiedenstes ablesen: Die Zahlenkolonnen verraten ihnen, wie die Position der Räder sich ändert, mit welcher Kraft die Antriebe laufen oder ob die Räder auf einer Seite mehr belastet werden.
Aus der Datenmasse identifizierten sie Signalmuster, die sie typischen Abläufen zuordneten. Anhand dieser Muster und Daten können sie mithilfe mathematischer Modelle und intelligenter Algorithmen Zustände des Motors exakt beschreiben und so die Antriebe ansteuern oder überwachen, ob sie einwandfrei funktionieren. „Wir können die Räder sehr effizient ansteuern und ihre Funktion im Auge behalten“, sagt Matthias Nienhaus. Ein Verfahren, mit denen sie die Daten aus dem Motor noch aussagekräftiger machen und Störeffekte herausrechnen können, meldeten er und sein Team zum Patent an.
Über einen neu entwickelten Sensorgriff, den sie auf der Hannover Messe zeigen, schafft das Team eine Schnittstelle zum Menschen, der steuert, und so intuitiv eine gewünschte Richtung vorgeben kann: Im Sensorgriff sitzt die Schaltzentrale, der „Master“ des Systems. Der Sensorgriff kann an beliebiger Stelle an einem Elektromobil angebracht werden, also etwa am Krankenstuhl oder Einkaufswagen.
Der Griff misst Kräfte mehrdimensional in alle Richtungen. „Wir haben hierfür ein robustes und zugleich feinfühliges kapazitatives Messverfahren erforscht, entwickelt und aufgebaut“, erklärt Matthias Nienhaus. Hierdurch erkennt der Griff, wie stark und in welchem Winkel er gezogen, gedrückt, bewegt oder seitlich um die eigene Achse gedreht wird. Ein Fahrer vermittelt so ganz natürlich, welche Unterstützung er braucht. Der Griff weiß via Handerkennung auch, ob eine menschliche Hand ihn ergreift oder nicht, und kann so vorschriftsmäßig reagieren.
Anhand der Fahrinformationen, die der Mensch über den Sensorgriff intuitiv auf das zu bewegende Fahrzeug überträgt, berechnet die Elektronik, ob und wie genau die Elektromotoren welcher Räder sich einschalten müssen, mit welcher Leistung welches Rad sich in welche Richtung wie langsam oder schnell drehen muss. Verbunden über ein sogenanntes Datenbussystem arbeiten dabei mehrere Räder im Verbund zusammen. „Auf diese Weise lassen sich beliebig viele Räder einzeln oder im Team ansteuern und damit auch sehr große Lasten sicher manövrieren“, erläutert Nienhaus.
Entsprechende Befehle gibt der Griff an die Räder weiter, die nun automatisch den schiebenden Menschen dabei unterstützen, etwa den vollgepackten Einkaufswagen elegant um die Kurve gleiten zu lassen. Auch Notfallliegen oder Krankenbetten erreichen so kontrolliert und ohne unfreiwillige Kollisionen mit Wänden ihr Ziel. „Alles funktioniert wie gewohnt, nur dass unser System aus intelligenten Rädern und intuitiv bedienbarem Sensorgriff alles viel leichter von der Hand gehen lässt“, sagt Matthias Nienhaus.
Hintergrund:
Die Forschung wurde vom Bundesministerium für Bildung und Forschung (BMBF) sowie vom Zentralen Innovationsprogramm Mittelstand (ZIM) im Rahmen mehrerer Kooperationsprojekte gefördert.
Die Ergebnisse der anwendungsorientierten Forschung wollen die Forscher in die Industriepraxis bringen, hierzu hat Prof. Matthias Nienhaus aus seinem Lehrstuhl heraus die Firma WELLGO-Systems GmbH gegründet.
Wissenschaftliche Ansprechpartner:
Professor Dr. Matthias Nienhaus (Lehrstuhl für Antriebstechnik der Universität des Saarlandes) Tel.: 0681 302-71681; E-Mail: info@lat.uni-saarland.de
Weitere Informationen:
https://www.uni-saarland.de/lehrstuhl/nienhaus.html – Lehrstuhl für Antriebstechnik der Universität des Saarlandes
https://www.wellgo.de – WELLGO-Systems GmbH: Spin off aus dem Lehrstuhl
Media Contact
Alle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?
Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…
Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen
DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…
Mit Wearables die Gesundheit immer im Blick
Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…