Zuverlässige Halbleiter für Space und Quantentechnologien – von Chips bis zu Systemen
Das Ferdinand-Braun-Institut präsentiert auf der „Space Tech Expo Europe“ vom 16.-19.11.2021 in Bremen weltraumtaugliche, ultra-schmalbandige Diodenlaser-Module und optische Frequenzreferenzen sowie weitere III/V-Komponenten für Satelliten- und Quantentechnologie-Anwendungen.
Lasersysteme für quantenoptische Präzisionsexperimente
Das Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) besitzt langjährige Erfahrung bei der Entwicklung und Fertigung von robusten, kompakten Diodenlasermodulen für anspruchsvolle Weltraumanwendungen. Die Module haben ihre Leistungsfähigkeit bereits mehrfach in Experimenten unter Schwerelosigkeit bewiesen. Unter anderem fertigt das FBH derzeit 55 ultra-schmalbandige Lasermodule, die es für die BECCAL-Apparatur (Bose-Einstein Condensate – Cold Atom Laboratory) entwickelt hat. Sie sollen in der vom Deutschen Zentrum für Luft- und Raumfahrt DLR und der NASA ab 2024 betriebenen Forschungsanlage für quantenoptische Experimente mit ultra-kalten Atomen an Bord der internationalen Raumstation ISS eingesetzt werden. Fundamentalphysikalische Fragestellungen mit Quantenobjekten sollen damit nahe dem absoluten Temperaturnullpunkt (-273,15 °C) hochgenau untersucht werden.
Kernstücke dieser und bisheriger Diodenlasermodule sind am FBH entwickelte Laserdioden, die gemeinsam mit Optiken und weiteren passiven Elementen mit höchster Stabilität und Präzision aufgebaut werden. Dank der einzigartigen Mikrointegrationstechnologie des FBH sind die Module extrem robust und ideal für den Einsatz im Weltraum geeignet. Sie zeichnen sich durch geringe Abmessungen von nur 125 x 75 x 23 mm³, eine geringe Masse (750 g) sowie exzellente Leistungsparameter aus: Ausgangsleistungen > 500 mW bei zugleich schmaler intrinsischer Linienbreite < 1 kHz werden erreicht.
In enger Zusammenarbeit mit der Humboldt-Universität zu Berlin werden derartige Module auch zu kompakten Quantensensoren und optischen Uhren für den Einsatz im Weltraum und für industrietaugliche Systemlösungen in der Quantentechnologie aufgebaut. Das gemeinsame Joint Lab stellt eine neuartige, völlig autonome frequenzstabilisierte Laserquelle mit integrierter DFB-Laserdiode vor, die auf dem D2-Übergang in Rubidium bei 780 nm basiert.
Lasermodule für Satelliten: von Kommunikation bis Klimaschutz
Weitere Lasermodule entwickelt das FBH für Satellitenanwendungen. Laserdiodenbänke (LDB) des Instituts werden seit vielen Jahren erfolgreich als Pumplaser in Laserkommunikationsterminals (LCT) der Firma Tesat-Spacecom eingesetzt. Damit werden unter anderem hohe Datenmengen der Erdbeobachtung besonders schnell zwischen Satelliten und zur Erde übertragen. Die LDBs werden nach den Standards der Europäischen Weltraumorganisation (ESA) für Weltraumanwendungen entwickelt und qualifiziert. Deren Wellenlänge wird so auf das Pump-Übergangsband eines Nd:YAG-Lasers stabilisiert, dass der Laserstrahl des Pumplasers die stabile LCT-Leistung gewährleistet. Hinzu kommt die exzellente Zuverlässigkeit über die gesamte 15-jährige Lebensdauer der Mission.
Das FBH zeigt auch ein DBR-Laserarray-Modul, das dank eines auf Chipebene integrierten, die Wellenlänge stabilisierenden Bragg-Reflektors sowohl ein geringes Rauschen als auch eine hohe Zuverlässigkeit bietet. Die Eignung derartiger Module wurde für einen Dauerbetrieb von mehr als 15 Jahren nachgewiesen. Damit qualifizieren sie sich als Flughardware für die nächsten LCT-Weltraummissionen. Ein weiterer Pumplaser soll künftig auf dem Klimasatelliten MERLIN eingesetzt werden, der die Methankonzentration in der Atmosphäre messen soll. Dafür hat das FBH Lasermodule entwickelt, qualifiziert und geliefert, die jeweils mit zwei Hochleistungslaser-Halbbarren ausgestattet sind. Diese Module liefern 130 W gepulste Emission bei 808 nm und pumpen einen Nd:YAG-Laser. Die Leistungsfähigkeit und Zuverlässigkeit über die gesamte Missionsdauer wurde anhand umfangreicher Qualifikationen der Technologie nachgewiesen und vom ESA-Technologiezentrum ESTEC bestätigt. So degradiert die Leistung selbst bei einer langen Betriebsdauer von über vier Milliarden Pulsen nur unwesentlich.
Energieeffiziente Komponenten für Satellitenkommunikation und -sensorik
Wegen ihrer hohen Strahlungshärte und der möglichen hohen Schaltfrequenzen eignen sich Galliumnitrid (GaN)-Schalttransistoren besonders für das Power Conditioning in Satelliten. Der vom FBH neu entwickelte 10 A/400 V Aluminiumnitrid Power Core mit GaN-Leistungstransistoren in Halbbrücken-Konfiguration minimiert Streuinduktivitäten und Kapazitäten der Schaltzelle. Dabei werden Leistungsschalter, Gatetreiber und DC-Link-Kondensatoren extrem kompakt heterointegriert und die Wärme wird effizient durch das Aluminiumnitrid-Substrat abgeführt. So konnten die Schaltzeiten der Leistungszelle gegenüber einem traditionellen Aufbau mit diskreten Bauelementen halbiert werden. Hohe Schaltfrequenzen bei gleichzeitig hohem Konverter-Wirkungsgrad sind die Voraussetzung für Leistungskonverter mit besonders hoher Leistungsdichte. Ein zentraler Aspekt, da jedes Gramm im Weltraum zählt.
Stromverbrauch und Verlustleistung sind weitere kritische Punkte beim Betrieb von Leistungsverstärkern im Weltraum. Daher entwickelt das FBH Konzepte zum Envelope Tracking – eine bekannte Technik, um die Effizienz von Hochfrequenz-Leistungsverstärkern zu steigern.
Weitere Informationen:
https://www.spacetechexpo.eu/exhibitor-list/exhibitor?boothid=a3R4V000001DnRK – das FBH stellt auf dem Berlin-Brandenburger Gemeinschaftsstand in Halle 5, P42 aus
https://www.fbh-berlin.de/transfer-services/bauelemente-module/pumplaser-weltrau… – Informationen zu Pumplaserquellen
https://www.fbh-berlin.de/forschung/quantentechnologie – Lasermodule, Quantensensoren & optische Frequenzreferenzen für Weltraum & Quantentechnologien
Media Contact
Alle Nachrichten aus der Kategorie: Messenachrichten
Neueste Beiträge
Raum-Zeit-Kristall
Wichtiges Puzzleteil auf dem Weg zu neuen optischen Materialien. Photonische Raum-Zeit-Kristalle sind Materialien, die drahtlose Kommunikation oder Lasertechnologien leistungsfähiger und effizienter machen könnten. Sie zeichnen sich durch die periodische Anordnung…
Neuer Meilenstein in der Quantenforschung
Google Quantum AI und Quantenphysiker der Freien Universität Berlin veröffentlichen wegweisende Ergebnisse zu Hamiltonoperatoren. Ein Forschungsteam der Freien Universität Berlin und von Google Quantum AI hat eine innovative Methode zur…
Maßgeschneiderte Köpfe für den 3D-Druck
So gelingt individuelle Funktionsintegration. Fraunhofer IWU auf der Formnext, 19. – 22. November 2024, Halle 11.0/Stand E38. Wire bzw. Fiber Encapsulating Additive Manufacturing (WEAM/FEAM) könnte die industrielle Fertigung von Bauteilen,…