Komplexe Manningfaltigkeiten – oder: der Lösungsraum komplizierter nicht-linearen Gleichungen in 400 Variablen

Internationale Tagung – Drei Bayreuther Lehrstühle beteiligt – über 6 Mio € investiert


Um „komplexer Mannigfaltigkeiten“, z. B. den Lösungsraum von 500 komplizierten nicht-linearen Gleichungen in 400 Variablen geht es bei dem Forschungsschwerpunkt „Globale Methoden in der Komplexen Geometrie”. Vom 4.-8. April findet nun an der Universität Bayreuth die Abschlußtagung dieses Forschungsschwerpunktes statt. Die internationale Tagung mit 80 Teilnehmern aus Deutschland, Frankreich, Italien, Russland, Israel und den USA wird von Professor Thomas Peternell, Inhaber des Lehrstuhls „Komplexe Analysis“ geleitet.

Der Forschungsschwerpunkt wird von der Deutschen Forschungsgemeinschaft (DFG) finanziert und besteht seit 2000. In ihm arbeiten Wissenschaftler aus Bayreuth, Bochum, Erlangen, Essen, Hannover, Köln, Mainz und Tübingen zusammen. In das von Peternell koordinierte Projekt hat die DFG seit 2000 weit über 6 Millionen Euro investiert für Wissenschaftlerstellen, Mittel zur Einladung von Gästen und Reisemittel.

In Bayreuth sind ausser dem Lehrstuhl für Komplexe Analysis noch die Lehrstühle für Partielle Differentialgleichungen (Prof. Wolf von Wahl) und Algebraische Geometrie (Prof. Fabrizio Catanese) beteiligt. Die Mathematik in Bayreuth hat von dem Forschungsschwerpunkt sehr profitiert: in den letzten Jahren wurden durchschnittlich vier Stellen für junge Wissenschaftler von der DFG finanziert.

Durch den Forschungsschwerpunkt wurde jüngst eine Kooperation mit China möglich: im Rahmen eines deutsch-chinesischen Spezialprogramms wurden Mittel für einen Wissenschaftleraustausch bereitgestellt. In diesem Rahmen findet im September in Shanghai eine deutsch-chinesische Tagung „Komplexe Geometrie“ statt.

Thema des Forschungsschwerpunkte ist die Untersuchung „komplexer Mannigfaltigkeiten“, etwa den Lösungsraum von 500 komplizierten nicht-linearen Gleichungen in 400 Variablen. Aber auch physikalische Weltmodelle sind solche Mannigfaltigkeiten. Typische Fragestellungen sind: wie kann man solche Mannigfaltigkeiten berechen oder klassifizieren, wie kann man ihre Gestalt, zum Beispiel die Krümmung, bestimmen?

Andere Beispiele sind die sogenannten elliptischen Kurven, ohne die die moderne Kryptographie nicht denkbar ist, und ohne die es keine Kreditkarten geben würde. Elliptische Kurven sind auch die entscheidende mathematische Objekte bei der Lösung der berühmten Fermat- Vermutung. Hier ergeben sich enge Beziehungen zur Zahlentheorie. Die Komplexe Geometrie ist ebenfalls eng vernetzt mit anderen Disziplinen wie der Differentialgeometrie und ist daher eines der zentralen Gebiete der Mathematik, die an jeder wichtigen Universität der Welt mit Lehrstühlen vertreten ist.

Die neuesten Entwicklungen auf diesem Gebiet werden nun eine Woche lang an der Universität Bayreuth diskutiert und in 28 Fachvorträgen vorgestellt.

Weitere Informationen bei:
Professor Dr. Thomas Peternell
Tel. 0921/55-3369
e-mail: thomas.peternell@uni-bayreuth.de
http://btm8x5.mat.uni-bayreuth.de/%7Eschwerpunkt/abschlusstagung.html

Media Contact

Kerstin Wodal Universität Bayreuth

Alle Nachrichten aus der Kategorie: Veranstaltungsnachrichten

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…